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Abstract

The development of mobile technology and machine learning tools has made it easier
than ever to monitor health without visiting a doctor. In this thesis, we explore
the use of iris imaging as a medical diagnostic tool. We implement a system in
which images captured using a mobile device can be uploaded to and analyzed by
a central server. With this platform, we hope to build a large database of standard
iris images with labeled medical data and facilitate studies of iris diagnostics. In
our implementation, the feature extraction and classification tools built are applied
to predict diabetes, through a study conducted in collaboration with researchers at
Swami Vivekananda Yoga Anusandhana Samsthana (SVYASA). The results show
improvement in prediction accuracy and encourage further development of the server
platform for future, large-scale studies.

Thesis Supervisor: Richard Fletcher
Title: Research Scientist
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Chapter 1

Motivation: Non-Invasive Health

Diagnostics

1.1 Need for Ubiquitous Health Monitoring

Traditionally, healthcare has been reactive; when patients notice symptoms of being

ill, they contact a doctor and seek treatment. In recent years, the healthcare industry

in countries such as the United States and Canada has been shifting toward a preven-

tive care model, in which healhcare systems intervene much earlier, upon detection

of risk and even attempting to predict risk[21]. The social benefits are clear, as early

intervention means that people are treated before the onset of symptoms even occurs.

This can also reduce the economic burden of disease, both in terms of treatment costs

as well as loss of productivity[14]. Preventive care is particularly important because

of the aging population across the world. By 2030, the estimated population over the

age of 60 is nearly 1.5 billion, as opposed to the just over 900 million in 2015[16]. If

we were able to improve an individual’s overall health, he or she would suffer fewer

ailments with age and incur less cost on the healthcare system.

An important enabler of this change is technological development. With the

widespread access to smart phones and other Internet-connected devices, health mon-

itoring has become increasingly accessible and powerful. In 2017, a study published

by Aruba reported that 60% of healthcare organizations across the globe have incor-
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porated Internet of Things (IoT) technology into their work[3]. This includes devices

such as wearables that analyze vitals, home monitoring systems that alert caretak-

ers when an elderly person has fallen, and even a digital mirror that measures heart

rate[26]. Such automated systems, especially passive, non-contact ones, have the

potential of making healthcare a seamless portion of people’s lives.

1.2 Limited Healthcare Facilities in Developing Coun-

tries

In many developing countries, access to healthcare facilities and medical professionals

remains limited. The lack of access to diagnostic facilities accounts for a significant

portion of untreated major illnesses in rural India in particular[5]. More than 70%

of the population lives in rural areas, but urban areas have more than two-thirds of

the government hospital beds and a much greater private sector presence[4]. This

means that many people may not be willing to seek out medical attention until

they are quite ill. Various factors contribute to this issue, including lack of roads

and communication infrastructure, lack of fully trained professionals, and inadequate

public health financing[4].

1.3 Work in the MIT Mobile Technology Group

In MIT D-Lab, Dr. Richard Fletcher is leading the Mobile Technology Group in

developing non-invasive and low-cost mobile health tools to solve some of these above-

mentioned issues. Current and past projects include using a peak flow meter to detect

pulmonary diseases, mobile games for monitoring mental health, and thermal imaging

for diagnosis of infectious diseases. An important focus of the group’s work is mobility.

In developing areas in particular, a portable tool has a much wider reach, since it can

be deployed to local practitioners and even individuals for usage.

12



1.4 Eye Imaging for Diagnostics

We are interested in the exploration of iris imaging as another diagnostic tool. In

certain branches of non-Western medicine, the iris is thought to reflect conditions of

the human body. Specifically, iridology is the systemic diagnosis of human bodily con-

ditions through observed changes in the iris[17]. Most commonly, iridologists assert

that disease or other medical conditions can cause abnormalities in pigmentation[11].

The method has largely remained untested – only a handful of controlled, scientific

studies have been conducted to evaluate its effectiveness, and those that do exist

have been inconclusive[11]. If proven effective, however, it could be a useful screening

tool to aid physicians and patients alike in deciding whether or not to continue with

further testing and treatment, since it requires little more than a small camera.

In Chapter 2 of this thesis, we provide an overview of iris physiology. Chapter 3

covers existing literature of various forms of automated eye image classification, as

well as iridology. We then present our proposed iris diagnostics platform in Chapter 4

and the feature extraction tools in Chapter 5. Chapter 6 explains the machine learning

algorithms explored in this study. Additionally, we describe our implementation for

the specific application of diabetes screening and discuss our results in Chapter 7.

Finally, in Chapter 8 we explain the conclusions drawn from our study along with

proposals for future work on this project.
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Chapter 2

Background: Iris Physiology

2.1 Anatomy of the Iris

The eye is composed of three layers: an outer layer of connective tissue, a middle

vascular layer, and an inner neural layer. The main structures can be seen in Figure

2.1, which depicts the lower part of the right eye. The outer layer includes the cornea,

which is transparent, and the sclera, commonly known as the "white" of the eye. The

inner layer, or the retina, contains photoreceptors, which transform photon energy

into neural signals. The middle layer is known as the uvea and consists of the iris,

ciliary body, and choroid.[29]

The iris, a colored ring of muscles and connective tissue, is the outermost of the

three uvea structures and controls dilation of the pupil, which varies the amount of

light that passes through. The radius of the iris is 12 mm on average, and the radius

of the pupil can range from 0.5 mm to 4.5 mm depending on dilation. A circular ridge,

the collarette, lies approximately 1.5 mm from the pupillary margin and divides the

iris into the pupillary zone and the ciliary zone. The ciliary zone, which is the outer

ring of the iris, extends to the iris root.[29] Figure 2.1 clearly depicts the ridge formed

by the collarette.

The iris can be further divided into four layers: the anterior border layer, stroma

and sphincter muscle, anterior epithelium and dilator muscle, and posterior epithe-

lium. The anterior border layer is an interweaving network of pigmented melanocytes,

15



Figure 2-1: Diagram of the lower part of the right eye[7].

fibroblasts, and collagen fibrils. The stroma also contains many pigmented and non-

pigmented cells, along with collagen fibrils and ground subtance. Arteries branch off

the major circle of the iris, located in the ciliary body, and extend toward the pupil

margin. The structures and density of the components in the anterior border layer

and stroma, as well as pigment density in the melanocyte, contribute to the color of

the iris. The sphincter muscle is a circular muscle which causes constriction of the

pupil in miosis, while the dilator muscle causes dilation in mydriasis. The anterior

and posterior epithelium include pigmented epithelium, and in particular part of the

posterior epithelium forms the pupillary ruff, a roughly textured ring encircling the

pupil.[29]

2.2 Development of the Iris

During embroyonic development, the neural tube ectoderm and mesenchyme eventu-

ally give rise to the iris. After week 3, the optic cup forms as the precursor to the

eye. The anterior portion of the optic cup forms the iris and ciliary body epithelia.

The anterior portion of the optic cup’s inner layer, most of which forms the neural
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Figure 2-2: Extremely close-up image of an eye that shows the fibrous structure on
the anterior border layer and stroma[13].
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retina, gives rise to the non-pigmented cells of the iris. Neural crest cells form the

stroma, and the sphincter and dilator muscles develop from neuroectoderm. Most of

this development occurs before week 10 of the embryo’s life.[25]

18



Chapter 3

Related Work

Eye image classification is used extensively in medicine and in biometrics, and there

has been a recent focus in iris biometrics and retinal diagnostics in particular. Al-

though there is less literature regarding iridology, there is also interest in the evalua-

tion of iris diagnostics.

3.1 Iris Biometrics

Most applications of iris-related imaging have been designed for biometrics and iden-

tification of individuals. One of the earliest conceptual designs for automated iris

biometrics was patented in 1987 by Flom and Safir, but was unimplemented[6]. In

the 1990s, Daugman began laying the groundwork for much of iris biometrics funda-

mentals, and in fact much of commerical technology is still based on his work[6].

Because of the interest in applying iris biometrics to security, one focus has been in

developing systems that can detect and analyze the iris from a distance and while the

individual is in motion. Matey et al. presented the IOM system in 2006, a commercial

system that can perform iris recognition while the individual walks through a confined

space at normal speed[22]. In 2014, Tan and Kumar used Zernike moments to match

iris features, in an effort to develop a system that can accurately recognize irises in

both near-infrared and visible illumination, and in unconstrained environments[32].

The particular challenges in these unconstrained environments is achieving sufficient
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image quality and handling motion blur. Daugman suggests that a minimum of 70

pixels is necessary in the iris radius, which means distant imaging systems have high

resolution requirements[9]. On the other end of the spectrum, Hariprasath and Mohan

have focused on personal identification systems instead, optimizing for close-up iris

recognition[15].

3.2 Retinal Diagnostics

A part of the eye that is commonly used in imaging-based diagnostics is the retina.

Located in the back of the eye, the retina can be imaged via a fundus camera, opthal-

moscope, or optical coherence tomography, to name a few[20]. Fundus imaging is

most commonly used as a screening tool for diabetic retinopathy, a disease stemming

from diabetes that damages the eye, even leading to blindness[20]. A variety of other

chronic illnesses can also lead to complications of the eye, especially cardiovascular

disease and neurological disease pertaining the central nervous system[20]. In 2016,

Varun et al. applied deep learning algorithms to detect diabetic retinopathy with

high sensitivity and specificity[34]. More recently, researchers at Google conducted

a study in which deep learning of retinal images successfully predicts a variety of

cardiovascular risk factors, such as age, gender, and blood pressure[27]. There is par-

ticular interest in pairing these AI algorithms with fundus cameras, since it is simple

to attach an opthalmoscopic lens to a smartphone camera, in effect creating a fundus

camera optical system, and capture good quality images[18].

3.3 Iridology

In iridology, the key idea is that specific regions of the iris map to various organs

and tissues in the human body [17]. We can see in Figure 3.3 a chart developed by

Bernard Jensen. The chart divides the left and right eye irises into several rings and

further splits them into sections based on degrees around the circle.

In the past, studies of iridology have shown inconclusive results, and the field has
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Figure 3-1: Iridology chart of the left (top) and right (bottom) eye irises [23]
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not been conventionally accepted in western medicine. A 2000 review of iridology

studies found only four controlled and masked experiments on the subject, and those

either return results similar to random chance or have too-small sample sizes[11].

In 2007, however, Discant et al. automate the process to more successfully classify

iris images from healthy individuals and those with cardiovascular problems, using

b-spline wavelets and moments from the images [10]. A recent study performed by

researchers at Swami Vivekananda Yoga Anusandhana Samsthana (SVYASA) and

Ramaiah University also shows potential in this method of diagnosis for diabetes

[33].
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Chapter 4

Proposed Solution: Iris Diagnostics

Platform

4.1 Motivation

As mentioned in Section 3.3, there have been few attempts at conducting scientific

studies on the effectiveness of iris diagnostics. With the recent advent in machine

learning techniques and IOT (Internet of Things) technology, we now have the tools

to create a large-scale platform for storage and analysis of iris images, in conjunction

with other factors of an individual’s health. Using these, we would be able to obtain

more meaningful and conclusive results than previous studies have managed.

We propose the development of an online platform and mobile application that

enables easy upload and analysis of iris images. Any individual may download the

application, capture an image of their iris, and receive results within minutes. We

also intend to provide access to the data collected to any individuals interested in per-

forming their own analyses on the raw information. Of course, due to the sensitive

nature of the data (iris biometrics could allow identification of the study partici-

pants), this access will be limited to those explicitly given permission. By building a

large database of iris images labeled with multiple health factors and providing tools

for basic feature extraction, we aim to not only perform our own analyses but also

encourage others to participate as well.

23



Figure 4-1: System architecture for iris diagnostics platform

4.2 System Architecture

The system provides two services: analysis of personal iris data and access to overall

study results and data. The tasks are divided among three main components: a

mobile application, web server, and frontend web UI, as depicted in Figure 4.2. The

user captures an image of the eye using either the phone camera or an attached

imaging device and uploads it via the application, along with other basic health

information such as age, weight, or blood pressure. Personal analysis results can

also be viewed in the application upon log in. The server stores and processes iris

images, extracting the appropriate features and calculating scores for each image.

These features and scores are stored within the database on the server as well. The

web interface allows access to the raw feature data with proper permissions, along

with general statistics about and visualizations of the data.
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Chapter 5

Feature Extraction for Iris Analysis

To perform feature extraction, we must first preprocess and segment the target region

of the iris. We then examine a range of features, which include texture features to

detect structural changes as well as color features for pigmentation changes.

5.1 Iris Segmentation

We prepare for iris segmentation by enhancing the grayscale images in two ways:

increasing contrast and removing glare. After experimentation with different param-

eters, we find that limiting the grayscale pixel range to [0.15, 0.7] sufficiently enhances

the image to correctly detect the iris. To remove glare, we use morphological recon-

struction by dilation, a geodesic operator that fills "holes" in an image. This process

involves the original image 𝐼 and a structuring element 𝑆, which defines a neighbor-

hood surrounding any single pixel. We define gray-valued dilation as

𝛿(𝐼)(𝑥) = 𝐼(max
𝑠∈𝑆

𝑥+ 𝑠) (5.1)

where 𝑥 and 𝑠 are vector quantities[1]. Conceptually, each pixel takes on the maximum

value in its neighborhood. When this dilation process is constrained beneath a mask

of the original image, the end result is a copy of the original image with its regions

of lower value filled.

25



After preprocessing is complete, we find the position and size of the iris. Many such

methods exist, and they are generally variations of circle detection in an image. One

of the most common ones performs a search using the Daugman integrodifferential

operator [8]

max
𝑟,𝑥0,𝑦0

𝐺𝜎(𝑟) *
𝜕

𝜕𝑟

∮︁
𝑟,𝑥0,𝑦0

𝐼(𝑥, 𝑦)

2𝜋𝑟
𝑑𝑠 (5.2)

where 𝐼(𝑥, 𝑦) is the image, 𝑟 is the radius, and (𝑥0, 𝑦0) are the center coordinates.

𝐺𝜎(𝑟) is a smoothing function with scale 𝜎. By finding the circle with the greatest

contour integral derivative, we can detect the edge of the pupil or iris, depending on

the range of coordinates and radii over which the algorithm searches. Figure 5.1 shows

the circles found to delineate the iris and pupil. Because of the fine search required

to detect the iris and pupil, this portion of the process is quite slow. We increase the

speed by searching in a scaled down copy of the image for a coarse estimate, then

searching within only a small range of the estimated center and radius in the original

image.

Figure 5-1: The black circle marks the detected iris, and the white circle marks the
detected pupil.

After finding the iris, it is simple to locate a particular region of interest (ROI),

which is specified by a range over angle and a range over distance from the center.
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In order to convert this curved region into a rectangle, we sample from its polar

coordinates for easier analysis, as seen in Figure 5.1.

Figure 5-2: Sampling from ROI polar coordinates to transform into rectangular region

5.2 Texture Features

An important component of an image is its texture: the presence of patterns, edges,

or other features that are unrelated to color. A class of such methods is wavelets.

One commonly used wavelet in signal processing is the Gabor wavelet, and its 2-D

sister can be used for image texture extraction. Other methods of capturing tex-

ture include applying Fourier transform and calculating the gray-level co-occurrence

matrix (GLCM).

5.2.1 Gabor Features

Gabor Filter

The 2-dimensional Gabor filter is a modulation of a Gaussian function with a complex

sinusoidal, allowing it to capture both orientation and frequency characteristics [31].
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Figure 5-3: Gabor filters in the spatial dimension, for 𝜃 = {0, 𝜋
8
, ..., 7𝜋

8
} and 𝑓 =

{1, 2, 3, 4}.

It is represented by the following equation:

𝐺(𝑥, 𝑦) = 𝑒
− 1

2

(︂
𝑥′2

𝜎2
𝑥
+ 𝛾2𝑦′2

𝜎2
𝑦

)︂
𝑒𝑖(2𝜋𝑥

′𝑓+𝜓) (5.3)

𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 (5.4)

𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃 (5.5)

where (𝑥, 𝑦) is a pixel position in the image, 𝜎𝑥 and 𝜎𝑦 are the standard deviations

of the Gaussian in the 𝑥 and 𝑦 directions, 𝑓 is the frequency of the sinusoid, 𝜓

represents the phase offset, and 𝜃 is the orientation. Figure 5.2.1 depicts filters of

varying orientations and frequencies which are used in this study. We use these filters

to capture a comprehensive set of features for an image 𝐼 by taking the output of the

the convolution 𝐺 * 𝐼, for each filter 𝐺 in a particular orientation 𝜃 and frequency 𝑓 .

By specifying a number of Gabor filters in various directions and frequencies,
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Figure 5-4: Output images as a result of applying an array of Gabor filters to a 5-by-
5 checkerboard. The filters used have frequencies {0.01, 0.02, 0.03} and orientations
{0, 𝜋

4
, 𝜋
2
, 3𝜋

4
}.

we can capture a comprehensive set of features. We can see in Figure 5.2.1 the

effects of applying an array of Gabor filters to a checkerboard image. For filters of

orientation 𝜃 = 𝑘𝜋, for 𝑘 ∈ Z, vertical lines are highlighted in the output; for filters

of orientation 𝜃 = 𝑘𝜋
2
, horizontal lines are highlighted. More concretely, we expect

that when a Gabor filter captures relevant feature information, the variance of output

pixels will be higher. Figure 5.2.1 plots the pixel variance across frequencies for two

checkerboards. The variance peaks at 𝑓 = 0.05 for the 10-by-10 checkerboard, and

𝑓 = 0.1 for the 20-by-20 checkerboard. This is consistent with expectation, since the

20-by-20 checkerboard has twice the base frequency as does the 10-by-10.

When we apply this feature extraction method to iris images, we perform similar

frequency and orientation analyses to select the most useful features. Figure 5.2.1

shows a heatmap of where the variance peaks for a sample section of the iris. The
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Figure 5-5: Plot of pixel variance v. frequency of Gabor filter for two checkerboards:
10-by-10 and 20-by-20. The orientation is 𝜃 = 0 for all filters applied. Note that the
variances for the 20-by-20 checkerboard are scaled by a constant so that the peaks
can be more easily compared.

peaks correspond to the (𝑓, 𝜃) pairs: (0.98, 0), (0.98, 𝜋
2
), (1.44, 𝜋

4
), and (1.44, 3𝜋

4
).

Local Gabor Binary Pattern Histogram Sequence

One common method of extracting features from Gabor filter responses is applying

the local binary pattern (LBP) operator[35]. The LBP operator thresholds each of

the 8 neighbors of a pixel to a 0 or 1, such that

𝑆(𝑓𝑝 − 𝑓𝑐) =

⎧⎪⎨⎪⎩1 if 𝑓𝑝 > 𝑓𝑐

0 if 𝑓𝑝 < 𝑓𝑐

(5.6)

The LBP pattern at each pixel is then calculated as

𝐿𝐵𝑃 =
7∑︁
𝑝=0

𝑆(𝑓𝑝 − 𝑓𝑐)2
𝑝 (5.7)
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Figure 5-6: Heatmap of Gabor response variances. The x axis values represent fre-
quencies in the range [0.1, 2], and the y axis values represent angles in the range
[0, 7𝜋

8
].
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Since we apply LBP to the Gabor magnitude response, this returns the local Gabor

binary pattern (LGBP).

To reduce the feature space and to find regional properties of these patterns,

we additionally find histogram sequences of the LGBP (LGBPHS). The image is

divided into non-overlapping patches, and gray-level histograms are extracted from

each patch.

5.2.2 Other Features

Fast Fourier Transform

In addition to Gabor wavelets, we also apply a 2-dimensional fast Fourier transform

(FFT) to the image, which breaks the image down into sinusoidal components. This

allows us to capture the overall frequency information but without specific orientation.

Gray-Level Co-Occurrence Matrix

Proposed by R. M. Haralick, the gray-level co-occurrence matrix (GLCM) is a measure

of spatial relationship between pixels [28]. A GLCM 𝐶 of size 𝑘 × 𝑘 is defined such

that 𝐶𝑖𝑗 is the frequency at which a pixel of gray level value 𝑔𝑖 occurs some specified

vector 𝑡 away from a pixel of value 𝑔𝑗, where there are 𝑘 distinct gray levels. Using

this, we can calculate a number of features:

1. Energy
𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝐶2
𝑖𝑗 (5.8)

2. Contrast
𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝐶𝑖𝑗(𝑖− 𝑗)2 (5.9)
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3. Entropy

−
𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝐶𝑖𝑗 log𝐶𝑖𝑗 (5.10)

4. Correlation
𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝐶𝑖𝑗(𝑖− 𝜇𝑖)(𝑗 − 𝜇𝑗)

𝜎𝑖𝜎𝑗
(5.11)

5. Homogeneity
𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝐶𝑖𝑗
1 + |𝑖− 𝑗|

(5.12)

The GLCM we calculate is based on a range of angles {0, 𝜋
4
, 𝜋
2
, 3𝜋

4
} and a vector

distance of 1.

5.3 Color Features

One of the leading theories regarding iris diagnostics is that the changes are reflected

in pigmentation. Therefore, for the RGB images collected, we want to examine fea-

tures within the colorspace as well. One commonly used feature is color histograms.

We divide each of the three color channels into bins, and each bin stores the number

of pixels in the image with corresonding RGB values.

33



34



Chapter 6

Machine Learning Algorithms for Iris

Diagnostic Prediction

We explore a variety of classification methods that might be used for diagnostic

prediction. In its most basic form, diagnosis is a binary classification problem.

6.1 Linear Classifers

One simple classifier is logistic regression, which estimates the probability of a label

𝑦 by calculating the distance from the feature vector to a hyperplane with normal 𝜃.

More specifically, we have

𝑃 (𝑦 = 1|𝑥) = 1

1 + 𝑒−𝜃𝑇 𝑥
= 𝜎(𝜃𝑇𝑥) (6.1)

𝑃 (𝑦 = 0|𝑥) = 1− 𝑃 (𝑦 = 1|𝑥) (6.2)

with a loss function

𝐿𝑜𝑠𝑠 =
1

𝑛

∑︁
𝑖

(︀
𝑦(𝑖) log𝑃 (𝑦(𝑖) = 1|𝑥(𝑖)) + (1− 𝑦(𝑖)) log

(︀
1− 𝑃 (𝑦(𝑖) = 1|𝑥(𝑖))

)︀)︀
(6.3)

where 𝑛 is the total number of training points, 𝑦(𝑖) is the label for 𝑥(𝑖), the 𝑖th data

point in the training data set, and 𝜃 is the parameters we train[19].
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Another linear classifier is the support vector machine (SVM). We again use a

linear separator 𝜃, but instead of applying the sigmoid function to obtain a probability,

we find the hyperplane that maximizes the margin. In other words, we find the

hyperplane such that the distance between it and the nearest datapoints is maximized.

This requires the use of hinge loss:

𝐿𝑜𝑠𝑠 =
1

𝑛

∑︁
𝑖

max{0, 1− 𝑦(𝑖)𝜃𝑇𝑥(𝑖)} (6.4)

In both SVM and logistic regression, we can additionally include a regularization

term 𝜆‖𝜃‖2 in the loss function, where 𝜆 controls the strength of regularization.

6.2 Non-Linear Classifiers

SVM is often enhanced by applying different kernels to the data points, which allows

us to find non-linear separators even though it is inherently a linear model. One such

kernel is the radial basis function (RBF). This applies a Gaussian to each point in

the training data set to form a basis and calculates features based on the proximity

of each data point to this basis[19].

In this study, we also examine a class of non-linear models, decision trees. At each

node of a tree, the data is split based on a condition, usually on a single feature. The

leaves of the tree contain label predictions. Many algorithms exist for the construction

of decision trees, most using a top-down approach and picking split conditions at each

node that will maximize some criterion. Two of the most commonly used criteria for

splitting are entropy and Gini index[30]. Change in entropy, or information gain,

represents the amount of information learned about the labels from performing a

split

𝐻(𝑆)−
∑︁

𝑠∈{𝑆𝑙,𝑆𝑟}

|𝑠|
|𝑆|

·𝐻(𝑠) (6.5)

where

𝐻(𝑆) =
∑︁

𝑦∈{0,1}

−|𝑆𝑦|
|𝑆|

log2
|𝑆𝑦|
|𝑆|

(6.6)
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such that 𝐻 is entropy, 𝑆 is the total set of data points, 𝑆𝑙 and 𝑆𝑟 are the subsets

contained within the left and right child nodes, and 𝑆𝑦 is the subset of data points

with label 𝑦. The criterion based on the Gini index has a similar form

𝐺(𝑆)−
∑︁

𝑠∈{𝑆𝑙,𝑆𝑟}

|𝑠|
|𝑆|

·𝐺(𝑠) (6.7)

where

𝐺(𝑆) = 1−
∑︁

𝑦∈{0,1}

(︂
|𝑆𝑦|
|𝑆|

)︂2

(6.8)

where𝐺 is the equation for the Gini index. For both criteria, a higher information gain

or Gini gain means that the impurity of the data has been reduced and is therefore

more desirable.
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Chapter 7

Implementation of Iris Analysis for

Diabetes Screening

To evaluate the viability of our proposed platform, we implement a basic version of

the system and apply it to screening of diabetes. We conduct this study in collabora-

tion with researchers at the diabetes clinic of SVYASA in Bengaluru, India. Diabetes

is a widespread chronic condition that can lead to many other complications if not

diagnosed and treated early[2]. In 2014, 422 million people across the world were

diagnosed with diabetes [24]; in India, there were close to 70 million [12]. Current

methods of diagnosis require performing blood tests on the patient, which is invasive

and inconvenient for those who do not have ready access to healthcare profession-

als. Therefore, successful application of iris diagnostics to diabetes could be very

impactful.

7.1 Data Collection

7.1.1 Imaging Device

To capture images of the iris, we use a webcam connected to a mobile device, as

pictured in Figure 7.1.1, or the camera on the device itself. The camera is optionally

surrounded by six infrared LED lights in order to eliminate the effects of different
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Figure 7-1: The imaging device consists of a webcam with six infrared LEDs, as well
as a hood attachment that covers the webcam. The device is connected to a mobile
device which is running the companion mobile application.

iris pigmentations. This also includes a 3D-printed hood attachment, designed by

another member of the group, that covers the eye, which allows for consistent camera

distance. It also limits the effects of surrounding light, such as glare, especially when

infrared illumination is used.

7.1.2 Mobile Application

The mobile phone or tablet connected to the imaging device contains an application

that controls image capture and data transmission. Once the image of the iris is

captured, the user can send it to the server for analysis, along with responses to

a general health questionnaire, which may include information such as eye color,

ethnicity, diet, or current medication. Once the server completes its feature analysis,

the results are displayed in the application. Presently, these are scores for each region

in the iris.
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7.1.3 File Server

The server framework is developed by another member of the group, using Django

and a PostgresSQL database. The machine learning work is implemented in Python.

When an image is sent to the server, it is processed for feature extraction and

analysis. We detect the iris as described in Section 5.1 and segment each desired

region as a rectangular matrix. We then extract a feature vector from this region.

These features are compared to the existing features in our database, and scores are

computed for each region, calculated as a distance metric from the average individual’s

iris. This can be generalized, however, to other metrics such as prediction score for a

particular disease. The resulting features are also saved to the database, so that our

dataset is continuously growing.

For the particular application of diabetes screening, we also implement the classi-

fication of images in a labeled dataset. This uses the algorithms described in Chapter

6 to predict the extracted feature vectors as diabetic or non-diabetic. Because our

dataset is limited, we elect to use relatively simple classification tools in order to avoid

unduly complex models and overfitting to the data.

7.2 Data Analysis

Our dataset consists of 11 iris images, collected from 8 study participants at the

SVYASA diabetes clinic. Using the iridology chart in Figure 3.3, we divide each

iris into 24 regions, as depicted in Figure 7.2. If we compare these regions to a

sample iris image in Figure 7.2, we can see that some regions are partially or entirely

occluded by the upper and lower eyelids. During segmentation, we detect whether the

target region is completely visible by performing a simple frequency analysis using

FFT. Because the skin is mostly uniform, whereas the iris has very detailed texture,

regions that are partly or entirely covered have lower high frequency coefficients. If

a region is not wholly visible, we ignore it in our analysis. For the application to

diabetes screening, we select region 21, which corresponds to the pancreas, the organ

that produces insulin and regulates blood glucose levels.
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Figure 7-2: The iris is labeled with 24 ROI, each corresponding to a different organ,
system, or part of the human body. The black circle in the center is the pupil. The
regions are reflected along the vertical axis in the left eye.

Figure 7-3: The image on the left shows an eye in which part of the iris is occluded
by the upper and lower eyelids. The image on the right shows an eye in which the
iris is completely visible.
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Feature LGBPHS Gabor response Color histogram GLCM FFT

Average time (s) 18.7 14.9 4.5 0.84 0.13
Dimensions 7200 2457600 512 180 307200

Table 7.1: Average time in seconds and feature dimension for extracting each feature
type from a region of the iris.

The average iris radius is 190 pixels across, and the average pupil radius 52 pixels.

Iris detection is one of the most time-consuming processes in the pipeline, requiring

about 18 seconds per image. Table 7.2 lists the average time required for each type

of feature extraction performed on a single region. Raw Gabor response is by far the

largest feature, since it is essentially multiple filtered versions of the original ROI. We

also see that, due to the complexity of the Gabor wavelet, applying the Gabor filter

is computationally more cosuming than all other features. FFT is the fastest feature

to calculate, although its size is also quite large.

7.3 Results

We evaluate the performance of our classification models on two metrics: percent

accuracy and area under the receiver operating characteristic (ROC) curve. The ROC

curve plots the true positive rate against the false positive rate at various prediction

thresholds, where a perfect classifier would have an area under the curve (AUC) of 1.

Table 7.3 presents the average accuracy and AUC results from 3-fold cross-validation

on a variety of region 21 feature and machine learning model combinations.

To evaluate our hypothesis that different regions of the iris reflect the condition of

different parts of the body, we perform classification on other regions as well. Because

a portion of the regions are partially occluded in some images, and some are affected

by glare, we include in Table 7.3 only the results from regions that are visible and

without glare in all 11 images.
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Algorithm
LGBPHS Gabor response Color histogram GLCM FFT
Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

LR 0.76 0.89 0.53 0.67 0.64 0.61 0.58 0.39 0.76 0.94
Linear SVM 0.76 0.89 0.64 0.75 0.64 0.45 0.53 0.34 0.76 0.89
RBF SVM 0.64 0.83 0.64 0.5 0.64 0.5 0.64 0.5 0.64 0.61
Decision tree 0.7 0.66 0.57 0.57 0.74 0.66 0.93 0.91 0.55 0.56

Table 7.2: Mean accuracy and AUC scores from running 3-fold cross-validation on
each feature and algorithm pair, for region 21. The algorithms used are logistic
regression (LR), linear SVM, RBF-kernel SVM with 𝛾 = 0.0001, and decision tree
using Gini index. The features applied are LGBPHS, raw Gabor responses, color
histograms, GLCM properties, and FFT coefficients.

Figure 7-4: Mean ROC curve for 3-fold cross validation using a linear SVM model
with LGBPHS features.

Region 6 15 18 21 23 24

Accuracy 0.64 0.58 0.76 0.76 0.6 0.47
AUC 0.42 0.72 0.99 0.89 0.28 0.01

Table 7.3: Mean accuracy and AUC scores from running 3-fold cross-validation on a
subset of iris regions. A linear SVM is used with LGBPHS features.
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7.4 Discussion

We can see from results in Table 7.3 that GLCM properties return the best scores

when applied to the decision tree, with accuracy of 0.93 and AUC of 0.91. However,

they perform very poorly with all other models. LGBPHS and FFT have the next

best scores, for the logistic regression and linear SVM models. All four cases have

a 0.76 accuracy, with AUC of at least 0.89. Because these both have large feature

spaces, and especially because the size of our dataset is so limited, it is reasonable

that the simpler, linear classifiers would perform better than the complex, non-linear

ones, which would likely overfit. Raw Gabor response and color histogram both have

relatively low scores overall. Although GLCM achieves the best results, LGBPHS

is most consistent across different classification algorithms. Therefore, we conjecture

that LGBPHS may be more generalizable.

On the other hand, if computation time is of greater importance, we may prefer

FFT or GLCM instead. GLCM is over 20 times faster to compute as LGBPHS, and

FFT over 100 times faster, as seen in Table 7.2. Both feature types can achieve similar

or better prediction performance, with much less time. If memory is limited, we would

prefer GLCM properties over the rest because of its small feature size. LGBPHS

requires 40 times the memory, and FFT over 1000 times. It may be possible, however,

to prune the FFT feature set and reduce the number of dimensions by selecting only

the relevant frequency ranges.

The results for color features is inconclusive. Color histograms appear to be

mostly ineffective for diabetes prediction, but there are also a variety of different

color features that could be calculated.

When we compare across different regions of the iris in Table 7.3, we find that

region 18 performs slightly better than region 21 does, while the other regions perform

rather poorly. By matching region 18 to the iridology chart, we notice that region 18 is

another region that corresponds to the pancreas. The other regions tested correspond

to the liver, lungs, small intestine, and stomach. We cannot make a definite claim

as to the relevance of different iris regions, since they are of all different sizes, and
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our analysis may be impacted by that. Furthermore, we are only able to evaluate

this claim on a small subset of the iris regions. However, these results suggest that

there may be some significance to distinct regions of the iris and encourage further

exploration.
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Chapter 8

Conclusion and Future Work

In this thesis, we establish a platform for conducting large-scale studies on iris diag-

nostics and explore the effectiveness of using iris imaging as a diagnostic tool, with

the specific application of diabetes prediction. The results from classification are en-

couraging, as we perform better than the baseline of random guessing with several

combinations of features and machine learning algorithms. Furthermore, classifica-

tion on relevant regions based on the iridology chart has better performance than on

regions corresponding to other organs or systems in the body. However, the dataset

is very limited, so we are unable to draw strong conclusions. With our proposed sys-

tem of allowing individuals to upload iris images to a centralized datbase, we lay the

groundwork for a large-scale study and the creation of a diverse and well-annotated

dataset.

Future work in iris diagnostics should explore additional features and algorithms.

In particular, different color features should be tested to evaluate the relevance of

texture versus pigmentation in iridology. If color is found to be irrelevant, it may

be preferable to use infrared cameras to capture iris images. With more data, deep

learning techniques should also be applied. Due to their scale- and rotation-invariant

qualities, convolutional neural networks could be used to better learn features (both

color and texture) from the images. Furthermore, it may be interesting to analyze

images in combination with other health data, such as age or other conditions, so that

changes in the iris due to these other factors can be effectively ignored in classification.
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